CSE 451: Operating Systems
Winter 2026

Module 12

Virtual Memory, Page Faults,
Demand Paging, and Page Replacement

Gary Kimura



Reminder: Mechanics of address translation
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Note: Each process frame Y
has its own page table!




Reminder: Page Table Entries (PTES)

This is an idealized generic PTE
1 1 1 2 20
VIR[M| prot page frame number

PTE’s control mapping

— the valid bit says whether or not the PTE can be used
 says whether or not a virtual address is valid
* it is checked each time a virtual address is used

— the referenced bit says whether the page has been accessed
* it is set when a page has been read or written to

— the modified bit says whether or not the page is dirty
* it is set when a write to the page has occurred

— the protection bits control which operations are allowed
* read, write, execute

— the page frame number determines the physical page
» physical page start address = PFN
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Here is an actual PTE

Page-Directory Entry (4-KByte Page Table)

Ky 1211 9876543210
P|P|UIR
Page-Table Base Address Avail |G|E|olal|c|w|/]|/
s D|T|s|V
Available for system programmer's use J ‘
Global page (lgnored)
Page size (0 indicates 4 KBytes)
Reserved (set to 0)
Accessed
Cache disabled
Write-through
User/Supervisor
Read/\Write
Present
Page-Table Entry (4-KByte Page)
31 1211 9876543210
P PIP|UIR
Page Base Address Avail |G|A|D|AC|W|/]| !
T DIT|S (W
Available for system programmer’s use J ‘
Global Page
Page Table Attribute Index
Dirty
Accessed

Cache Disabled

Write-Through

User/Supervisor

Read/\Write

Present




Paged virtual memory

« We've hinted that all the pages of an address space
do not need to be resident in memory
— the full (used) address space exists on secondary storage
(disk) in page-sized blocks
— the OS uses main memory as a (page) cache
— a page that is needed is transferred to a free page frame

— if there are no free page frames, a page must be evicted
 evicted pages go to disk (only need to write if they are dirty)

— all of this is transparent to the application (except for
performance ...)

* managed by hardware and OS

« Traditionally called paged virtual memory
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Page faults

 What happens when a process references a virtual
address in a page that has been evicted (or never

loaded)?

— when the page was evicted, the OS set the PTE as invalid
and noted the disk location of the page in a data structure
(that looks like a page table but holds disk addresses)

— when a process tries to access the page, the invalid PTE will
cause an exception (page fault) to be thrown

Can a single instruction have multiple faults?

— the OS will run the page fault handler in response

handler uses the “like a page table” data structure to locate the
page on disk

handler reads page into a physical frame, updates PTE to point
to it and to be valid

OS restarts the faulting process
there are a million and one details ...



Demand paging

Pages are only brought into main memory when they
are referenced

— only the code/data that is needed (demanded!) by a process
needs to be loaded

« What’s needed changes over time, of course...
— Hence, it's called demand paging

Few systems try to anticipate future needs
— OS crystal ball module notoriously ineffective

But it's not uncommon to cluster pages
— OS keeps track of pages that should come and go together
— bring in all when one is referenced

— interface may allow programmer or compiler to identify
clusters



Page replacement

When you read in a page, where does it go?

if there are free page frames, grab one
« what data structure might support this?

if not, must evict something else
this is called page replacement

Page replacement algorithms

try to pick a page that won’t be needed in the near future
try to pick a page that hasn’t been modified (thus saving the disk
write)

OS typically tries to keep a pool of free pages around so that
allocations don’t inevitably cause evictions
OS also typically tries to keep some “clean” pages around, so that
even if you have to evict a page, you won’t have to write it

« accomplished by pre-writing when there’s nothing better to do

Much more on this later!



How do you “load” a program?

Create process descriptor (process control block)
Create page table

Put address space image on disk in page-sized
chunks

Build page table (pointed to by process descriptor)
— all PTE valid bits ‘false’

— an analogous data structure indicates the disk location of the
corresponding page

— when process starts executing:
* instructions immediately fault on both code and data pages

« faults taper off, as the necessary code/data pages enter
memory
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Picture before
executing the

Virtual Page first instruction
Address Table of the program
Space
0
esp - 0
0
0
0
0
0
eip — 0
0
Valid Bit Memory
Everything Management
is backed T
by files on w
the hard
drive
>
~_
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Physical
Memory
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Physical
Memory

When page
| faults occur
Virtual Page MM will read in
Address Table the necessary
Space page(s)
0
esp - 0
0
0
0
0
- 0
eip —
0 \\Fault Read
1 from
Valid Bit Memory Disk
Everything Management
is backed
by files on
the hard
drive
=
~
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Then validate
the PTE(s) and

Virtual Page let the program .
Address Table execute Physical
Space Memory
1 pfn
esp - 0
0
0
0
0
0
eip — 1] pfn
0
!
Valid Bit Memory
Everything Management
is backed
by files on
the hard
drive
o
~
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Memory

Virtual Page
Address Table
Space
1] pfn
esp 7 0
0
0
0
0
. 0 /
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Valid Bit Memory
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the hard
drive
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Oh, man, how can any of this possibly work?

* Locality!
— temporal locality
* locations referenced recently tend to be referenced again soon

— spatial locality

* locations near recently references locations are likely to be
referenced soon (think about why)

« Locality means paging can be infrequent
— once you've paged something in, it will be used many times
— on average, you use things that are paged in

— but, this depends on many things:
» degree of locality in the application
« page replacement policy and application reference pattern

« amount of physical memory vs. application “footprint” or
“working set”
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Evicting the best page

« The goal of the page replacement algorithm:
— reduce fault rate by selecting best victim page to remove
« “system” fault rate or “program” fault rate??

— the best page to evict is one that will never be touched again
e duh ...

— “never’ is a long time

« Belady’s proof: evicting the page that won't be used for the
longest period of time minimizes page fault rate

* Rest of this module:
— survey a bunch of page replacement algorithms

— for now, assume that a process pages against itself, using a
fixed number of page frames
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#1: Belady’s Algorithm

Provably optimal: lowest fault rate
— evict the page that won'’t be used for the longest time in future
— problem: impossible to predict the future

Why is Belady’s algorithm useful?

— as a yardstick to compare other algorithms to optimal

« if Belady’s isn’t much better than yours, yours is pretty good
— how could you do this comparison?

Is there a best practical algorithm?
— no; depends on workload

Is there a worst algorithm?
— no, but random replacement does pretty badly
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#2: FIFO

FIFO is obvious, and simple to implement
— when you page in something, put it on the tail of a list
— evict page at the head of the list

Why might this be good?
— maybe the one brought in longest ago is not being used

Why might this be bad?

— then again, maybe it is being used

— have absolutely no information either way

In fact, FIFO’s performance is typically lousy

In addition, FIFO suffers from Belady’'s Anomaly

— there are reference strings for which the fault rate increases
when the process is given more physical memory
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#3: Least Recently Used (LRU)

* LRU uses reference information to make a more
iInformed replacement decision
— idea: past experience gives us a guess of future behavior

— on replacement, evict the page that hasn’t been used for the
longest amount of time

* LRU looks at the past, Belady’s wants to look at future
* How is LRU different from FIFO?

— when does LRU do well?
* when is it lousy?

Example bad
case: looping
through array

\ J
[
amount of physical memory

19



#3: LRU continued

Implementation

— to be perfect, must grab a timestamp on every memory
reference, put it in the PTE, order or search based on the
timestamps ...

— way too $$ in memory bandwidth, algorithm execution time,
etc.

— SO0, we need a cheap approximation ...
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Approximating LRU

« Many approximations, all use the PTE’s referenced bit
— keep a counter for each page

— at some regular interval, for each page, do:
« if ref bit = 0, increment the counter (hasn’t been used)
« if ref bit = 1, zero the counter (has been used)
» regardless, zero ref bit

— the counter will contain the # of intervals since the last
reference to the page

« page with largest counter is least recently used

« Some architectures don’t have PTE reference bits

— can simulate reference bit using the valid bit to induce faults
* hack, hack, hack
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#4: LRU Clock

AKA Not Recently Used (NRU) or Second Chance

— replace page that is “old enough”

— logically, arrange all physical page frames in a big circle
(clock)

* just a circular linked list
— a “clock hand” is used to select a good LRU candidate
« sweep through the pages in circular order like a clock
« if ref bit is off, it hasn’t been used recently, we have a victim
— S0, what is minimum “age” if ref bit is off?
« if the ref bit is on, turn it off and go to next page
— arm moves quickly when pages are needed
— low overhead if have plenty of memory
— if memory is large, “accuracy” of information degrades
« add more hands to fix

22
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Quick recap of where we left off last
Friday

Page replacement strategies

That is, when physical memory is full, which page(s)
do we choose to remove from a process’s page
table”?

There are various ways to approach this, the more
common implementations are FIFO and LRU Clock.

The next question might be: “"How large of a net do
we cast in choosing a frame to evict?”
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Allocation of frames among processes

FIFO and LRU Clock each can be implemented as
either local or global replacement algorithms
— local
» each process is given a limit of pages it can use
* it “pages against itself” (evicts its own pages)
— global

 the “victim” is chosen from among all page frames, regardless
of owner

» processes’ page frame allocation can vary dynamically

Issues with local replacement?

Issues with global replacement?
— Linux uses global replacement
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* Hybrid algorithms
— local & global replacement

— an explicit mechanism for adding or removing page frames
from a process including changing the number of frames a
process uses
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VAS

Virtual Address Space

Process
1

Process
2
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MMU + OS’s
Memory Manager

Physical Memory

code

What size:

Working Set
e

Reduce page faults
to avoid thrashing

Part of Demand
Paging

Backend
Storage

Part of Page
Replacement

Hard Faults & Soft Faults

* How to get all of this to run faster

 Additional

features gained with paging
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Number of memory references between page faults

Where would you
like to operate?

Number of page frames allocated to process
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The working set model of program behavior

« The working set of a process is used to model the
dynamic locality of its memory usage
— working set = set of pages process currently “needs”
— formally defined by Peter Denning in the 1960’s
 Definition:
— WS(t,w) = {pages P such that P was referenced in the time
interval (i, t-w)}
« t: time
« w: working set window (measured in page refs)

« apage is in the working set (WS) only if it was referenced in the
last w references

— obviously the working set (the particular pages) varies over the
life of the program

— S0 does the working set size (the number of pages in the WS)
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Working set size

« The working set size, |[WS(t,w)|, changes with
program locality

— during periods of poor locality, more pages are referenced
— within that period of time, the working set size is larger

* Intuitively, the working set must be in memory,

otherwise you'll experience heavy faulting (thrashing)

— when people ask “How much memory does Firefox need?”,

really they're asking “what is Firefox’s average (or worst
case) working set size?”
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#5: Hypothetical Working Set algorithm

Estimate |WS(0,w)| for a process

Allow that process to start only if you can allocate it
that many page frames

Use a local replacement algorithm (LRU Clock?)
make sure that “the right pages” (the working set) are
occupying the process’s frames

Track each process’s working set size, and re-
allocate page frames among processes dynamically

Problem? Solution?
What the heck is w?

31



#6: Page Fault Frequency (PFF)

 PFF is a variable-space algorithm that uses a more
ad hoc approach

« Attempt to equalize the fault rate among all
processes, and to have a “tolerable” system-wide

fault rate
— monitor the fault rate for each process
— if fault rate is above a given threshold, give it more memory
» so that it faults less

— if the fault rate is below threshold, take away memory
 should fault more, allowing someone else to fault less
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Thrashing

« Thrashing is when the system spends most of its time
servicing page faults, little time doing useful work

— could be that there is enough memory but a lousy
replacement algorithm (one incompatible with program
behavior)

— could be that memory is over-committed
« too many active processes
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Number of active processes

Why?

peayJano o01az yum (-oas/sisanbal) indybnoayy weaisAg
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Number of active processes
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Where is life interesting?

* Not if system has too much memory
— page replacement algorithm doesn’t much matter (over-
provisioning)
* Not if system has too little memory

— page replacement algorithm doesn’t much matter (over-
committed)

 Life is only interesting on the border between over-
provisioned and over-committed
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Summary

Virtual memory
Page faults
Demand paging

— don’t try to anticipate

Page replacement
— local, global, hybrid

Locality

— temporal, spatial
Working set
Thrashing
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» Page replacement algorithms

#1: Belady’s — optimal, but unrealizable
#2: FIFO — replace page loaded furthest in the past

#3: LRU — replace page referenced furthest in the past
« approximate using PTE reference bit

#4:. LRU Clock — replace page that is “old enough”
#5: Working Set — keep the working set in memory

#6: Page Fault Frequency — grow/shrink number of frames
as a function of fault rate
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