CSE 451: Operating Systems
Winter 2026

Module 12

Virtual Memory, Page Faults,
Demand Paging, and Page Replacement

Gary Kimura

Reminder: Mechanics of address translation

virtual address

virtual page # | offset

physical memory

page
page table frame O
page
frame 1
page
frame 2
page
frame 3

physical address

page frame # —— | page frame # | offset —

v

page
Note: Each process frame Y
has its own page table!

Reminder: Page Table Entries (PTES)

This is an idealized generic PTE
1 1 1 2 20
VIR[M| prot page frame number

PTE’s control mapping

— the valid bit says whether or not the PTE can be used
 says whether or not a virtual address is valid
* it is checked each time a virtual address is used

— the referenced bit says whether the page has been accessed
* it is set when a page has been read or written to

— the modified bit says whether or not the page is dirty
* it is set when a write to the page has occurred

— the protection bits control which operations are allowed
* read, write, execute

— the page frame number determines the physical page
» physical page start address = PFN

2/8/2026

Here is an actual PTE

Page-Directory Entry (4-KByte Page Table)

Ky 1211 9876543210
P|P|UIR
Page-Table Base Address Avail |G|E|olal|c|w|/]|/
s D|T|s|V
Available for system programmer's use J ‘
Global page (lgnored)
Page size (0 indicates 4 KBytes)
Reserved (set to 0)
Accessed
Cache disabled
Write-through
User/Supervisor
Read/\Write
Present
Page-Table Entry (4-KByte Page)
31 1211 9876543210
P PIP|UIR
Page Base Address Avail |G|A|D|AC|W|/]| !
T DIT|S (W
Available for system programmer’s use J ‘
Global Page
Page Table Attribute Index
Dirty
Accessed

Cache Disabled

Write-Through

User/Supervisor

Read/\Write

Present

Paged virtual memory

« We've hinted that all the pages of an address space
do not need to be resident in memory
— the full (used) address space exists on secondary storage
(disk) in page-sized blocks
— the OS uses main memory as a (page) cache
— a page that is needed is transferred to a free page frame

— if there are no free page frames, a page must be evicted
 evicted pages go to disk (only need to write if they are dirty)

— all of this is transparent to the application (except for
performance ...)

* managed by hardware and OS

« Traditionally called paged virtual memory

Memor
cache of so?/ne of Secondary
VAS Storage
with Free Frames
for additional

caching Complete

copy of
VAS VAS

(=t

2/8/2026

Page faults

 What happens when a process references a virtual
address in a page that has been evicted (or never

loaded)?

— when the page was evicted, the OS set the PTE as invalid
and noted the disk location of the page in a data structure
(that looks like a page table but holds disk addresses)

— when a process tries to access the page, the invalid PTE will
cause an exception (page fault) to be thrown

Can a single instruction have multiple faults?

— the OS will run the page fault handler in response

handler uses the “like a page table” data structure to locate the
page on disk

handler reads page into a physical frame, updates PTE to point
to it and to be valid

OS restarts the faulting process
there are a million and one details ...

Demand paging

Pages are only brought into main memory when they
are referenced

— only the code/data that is needed (demanded!) by a process
needs to be loaded

« What’s needed changes over time, of course...
— Hence, it's called demand paging

Few systems try to anticipate future needs
— OS crystal ball module notoriously ineffective

But it's not uncommon to cluster pages
— OS keeps track of pages that should come and go together
— bring in all when one is referenced

— interface may allow programmer or compiler to identify
clusters

Page replacement

When you read in a page, where does it go?

if there are free page frames, grab one
« what data structure might support this?

if not, must evict something else
this is called page replacement

Page replacement algorithms

try to pick a page that won’t be needed in the near future
try to pick a page that hasn’t been modified (thus saving the disk
write)

OS typically tries to keep a pool of free pages around so that
allocations don’t inevitably cause evictions
OS also typically tries to keep some “clean” pages around, so that
even if you have to evict a page, you won’t have to write it

« accomplished by pre-writing when there’s nothing better to do

Much more on this later!

How do you “load” a program?

Create process descriptor (process control block)
Create page table

Put address space image on disk in page-sized
chunks

Build page table (pointed to by process descriptor)
— all PTE valid bits ‘false’

— an analogous data structure indicates the disk location of the
corresponding page

— when process starts executing:
* instructions immediately fault on both code and data pages

« faults taper off, as the necessary code/data pages enter
memory

10

Picture before
executing the

Virtual Page first instruction
Address Table of the program
Space
0
esp - 0
0
0
0
0
0
eip — 0
0
Valid Bit Memory
Everything Management
is backed T
by files on w
the hard
drive
>
~_

2/8/2026

Physical
Memory

11

Physical
Memory

When page
| faults occur
Virtual Page MM will read in
Address Table the necessary
Space page(s)
0
esp - 0
0
0
0
0
- 0
eip —
0 \\Fault Read
1 from
Valid Bit Memory Disk
Everything Management
is backed
by files on
the hard
drive
=
~

2/8/2026

12

Then validate
the PTE(s) and

Virtual Page let the program .
Address Table execute Physical
Space Memory
1 pfn
esp - 0
0
0
0
0
0
eip — 1] pfn
0
!
Valid Bit Memory
Everything Management
is backed
by files on
the hard
drive
o
~

2/8/2026

13

Physical

Memory

Virtual Page
Address Table
Space
1] pfn
esp 7 0
0
0
0
0
. 0 /
ep — 1| pfn
0
Valid Bit Memory
Everything Management
is backed T
by files on w
the hard
drive
>
~_

2/8/2026

14

Oh, man, how can any of this possibly work?

* Locality!
— temporal locality
* locations referenced recently tend to be referenced again soon

— spatial locality

* locations near recently references locations are likely to be
referenced soon (think about why)

« Locality means paging can be infrequent
— once you've paged something in, it will be used many times
— on average, you use things that are paged in

— but, this depends on many things:
» degree of locality in the application
« page replacement policy and application reference pattern

« amount of physical memory vs. application “footprint” or
“working set”

15

Evicting the best page

« The goal of the page replacement algorithm:
— reduce fault rate by selecting best victim page to remove
« “system” fault rate or “program” fault rate??

— the best page to evict is one that will never be touched again
e duh ...

— “never’ is a long time

« Belady’s proof: evicting the page that won't be used for the
longest period of time minimizes page fault rate

* Rest of this module:
— survey a bunch of page replacement algorithms

— for now, assume that a process pages against itself, using a
fixed number of page frames

16

#1: Belady’s Algorithm

Provably optimal: lowest fault rate
— evict the page that won'’t be used for the longest time in future
— problem: impossible to predict the future

Why is Belady’s algorithm useful?

— as a yardstick to compare other algorithms to optimal

« if Belady’s isn’t much better than yours, yours is pretty good
— how could you do this comparison?

Is there a best practical algorithm?
— no; depends on workload

Is there a worst algorithm?
— no, but random replacement does pretty badly

17

#2: FIFO

FIFO is obvious, and simple to implement
— when you page in something, put it on the tail of a list
— evict page at the head of the list

Why might this be good?
— maybe the one brought in longest ago is not being used

Why might this be bad?

— then again, maybe it is being used

— have absolutely no information either way

In fact, FIFO’s performance is typically lousy

In addition, FIFO suffers from Belady’'s Anomaly

— there are reference strings for which the fault rate increases
when the process is given more physical memory

18

#3: Least Recently Used (LRU)

* LRU uses reference information to make a more
iInformed replacement decision
— idea: past experience gives us a guess of future behavior

— on replacement, evict the page that hasn’t been used for the
longest amount of time

* LRU looks at the past, Belady’s wants to look at future
* How is LRU different from FIFO?

— when does LRU do well?
* when is it lousy?

Example bad
case: looping
through array

\ J
[
amount of physical memory

19

#3: LRU continued

Implementation

— to be perfect, must grab a timestamp on every memory
reference, put it in the PTE, order or search based on the
timestamps ...

— way too $$ in memory bandwidth, algorithm execution time,
etc.

— SO0, we need a cheap approximation ...

20

Approximating LRU

« Many approximations, all use the PTE’s referenced bit
— keep a counter for each page

— at some regular interval, for each page, do:
« if ref bit = 0, increment the counter (hasn’t been used)
« if ref bit = 1, zero the counter (has been used)
» regardless, zero ref bit

— the counter will contain the # of intervals since the last
reference to the page

« page with largest counter is least recently used

« Some architectures don’t have PTE reference bits

— can simulate reference bit using the valid bit to induce faults
* hack, hack, hack

21

#4: LRU Clock

AKA Not Recently Used (NRU) or Second Chance

— replace page that is “old enough”

— logically, arrange all physical page frames in a big circle
(clock)

* just a circular linked list
— a “clock hand” is used to select a good LRU candidate
« sweep through the pages in circular order like a clock
« if ref bit is off, it hasn’t been used recently, we have a victim
— S0, what is minimum “age” if ref bit is off?
« if the ref bit is on, turn it off and go to next page
— arm moves quickly when pages are needed
— low overhead if have plenty of memory
— if memory is large, “accuracy” of information degrades
« add more hands to fix

22

2/8/2026

23

Quick recap of where we left off last
Friday

Page replacement strategies

That is, when physical memory is full, which page(s)
do we choose to remove from a process’s page
table”?

There are various ways to approach this, the more
common implementations are FIFO and LRU Clock.

The next question might be: “"How large of a net do
we cast in choosing a frame to evict?”

24

Allocation of frames among processes

FIFO and LRU Clock each can be implemented as
either local or global replacement algorithms
— local
» each process is given a limit of pages it can use
* it “pages against itself” (evicts its own pages)
— global

 the “victim” is chosen from among all page frames, regardless
of owner

» processes’ page frame allocation can vary dynamically

Issues with local replacement?

Issues with global replacement?
— Linux uses global replacement

25

* Hybrid algorithms
— local & global replacement

— an explicit mechanism for adding or removing page frames
from a process including changing the number of frames a
process uses

26

VAS

Virtual Address Space

Process
1

Process
2

2/8/2026

MMU + OS’s
Memory Manager

Physical Memory

code

What size:

Working Set
e

Reduce page faults
to avoid thrashing

Part of Demand
Paging

Backend
Storage

Part of Page
Replacement

Hard Faults & Soft Faults

* How to get all of this to run faster

 Additional

features gained with paging

27

Number of memory references between page faults

Where would you
like to operate?

Number of page frames allocated to process

28

The working set model of program behavior

« The working set of a process is used to model the
dynamic locality of its memory usage
— working set = set of pages process currently “needs”
— formally defined by Peter Denning in the 1960’s
 Definition:
— WS(t,w) = {pages P such that P was referenced in the time
interval (i, t-w)}
« t: time
« w: working set window (measured in page refs)

« apage is in the working set (WS) only if it was referenced in the
last w references

— obviously the working set (the particular pages) varies over the
life of the program

— S0 does the working set size (the number of pages in the WS)

29

Working set size

« The working set size, |[WS(t,w)|, changes with
program locality

— during periods of poor locality, more pages are referenced
— within that period of time, the working set size is larger

* Intuitively, the working set must be in memory,

otherwise you'll experience heavy faulting (thrashing)

— when people ask “How much memory does Firefox need?”,

really they're asking “what is Firefox’s average (or worst
case) working set size?”

30

#5: Hypothetical Working Set algorithm

Estimate |WS(0,w)| for a process

Allow that process to start only if you can allocate it
that many page frames

Use a local replacement algorithm (LRU Clock?)
make sure that “the right pages” (the working set) are
occupying the process’s frames

Track each process’s working set size, and re-
allocate page frames among processes dynamically

Problem? Solution?
What the heck is w?

31

#6: Page Fault Frequency (PFF)

 PFF is a variable-space algorithm that uses a more
ad hoc approach

« Attempt to equalize the fault rate among all
processes, and to have a “tolerable” system-wide

fault rate
— monitor the fault rate for each process
— if fault rate is above a given threshold, give it more memory
» so that it faults less

— if the fault rate is below threshold, take away memory
 should fault more, allowing someone else to fault less

32

Thrashing

« Thrashing is when the system spends most of its time
servicing page faults, little time doing useful work

— could be that there is enough memory but a lousy
replacement algorithm (one incompatible with program
behavior)

— could be that memory is over-committed
« too many active processes

33

Number of active processes

Why?

peayJano o01az yum (-oas/sisanbal) indybnoayy weaisAg

34

Buiyseuy) yum (-oas/sisanbau) indybnoayy welsAg

Number of active processes

35

Where is life interesting?

* Not if system has too much memory
— page replacement algorithm doesn’t much matter (over-
provisioning)
* Not if system has too little memory

— page replacement algorithm doesn’t much matter (over-
committed)

 Life is only interesting on the border between over-
provisioned and over-committed

36

Summary

Virtual memory
Page faults
Demand paging

— don’t try to anticipate

Page replacement
— local, global, hybrid

Locality

— temporal, spatial
Working set
Thrashing

37

» Page replacement algorithms

#1: Belady’s — optimal, but unrealizable
#2: FIFO — replace page loaded furthest in the past

#3: LRU — replace page referenced furthest in the past
« approximate using PTE reference bit

#4:. LRU Clock — replace page that is “old enough”
#5: Working Set — keep the working set in memory

#6: Page Fault Frequency — grow/shrink number of frames
as a function of fault rate

38

